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ANALYSIS OF NONEQUILIBRIUM DISSOCIATION KINETICS

IN A BOUNDARY LAYER USING VARIOUS REACTION MODELS

UDC 533.72+532.526G. Ya. Dynnikova, N. K. Makashev, and E. A. Rastigeev

Values of the nonequilibrium macroscopic reaction rate for a nonisothermal boundary layer of a
monatomic diluent gas are calculated using a number of models for thermal dissociation of diatomic
molecules — anharmonic Morse oscillators. Analysis is performed for conditions where the diffusive
transfer of excited molecules has a significant effect on the population of their upper vibrational
levels, which does not only amount to change in vibrational temperature. Under the joint influence
of diffusive transfer of molecules, vibrational exchanges, and reactions involving vibrationally excited
particles, the local vibrational distribution functions are substantially nonequilibrium. The kinetic
models considered take into account the possible contribution of the energy of molecular translational
and rotational degrees of freedom to the energy required to overcome the reaction threshold. The effect
of multiquantum vibrational–translational exchanges on the distribution of dissociating molecules in
their upper vibrational levels is taken into account approximately.

Introduction. In the present paper, we consider the thermal dissociation of diatomic molecules under
conditions where the dissociation energy Q is high compared to the thermal energy of the particles O(kT ) (k is the
Boltzmann constant and T is the gas temperature). In this case, investigation of the dissociation kinetics is based on
examination of properties of the high-energy tails of molecular distributions for the degrees of freedom of particles
whose energy is assumed to be used to overcome the dissociation threshold Q. Until recently, this problem has been
considered primarily for nonequilibrium reaction kinetics in a fixed gas (nonstationary formulation) or in a weakly
nonuniform gas flow (quasistationary formulation). In the present paper, we study features of the nonequilibrium
kinetics described by similar models of thermal dissociation, in substantially nonuniform nonisothermal flows with
diffusive transfer of particles (for example, in a boundary layer).

At present, extensive use is made of the stepwise mechanism and the corresponding model of thermal dis-
sociation, which assumes that the reaction occurs upon collisions of molecules at the upper vibrational levels with
energy close to the dissociation threshold. In many papers, dissociation of molecules that are at intermediate vibra-
tional levels is also considered possible. In this case, the deficiency in energy required to overcome the dissociation
threshold is compensated for by the translational and rotational motion of particles (see, e.g., [1–9]).

Most of the available models of dissociation under nonequilibrium conditions are based on a two-temperature
representation (i.e., it is assumed that the reaction rate constants depend on translational–rotational and vibrational
temperatures) and are written with allowance for quasistationary distributions of molecules in the vibrational levels
formed in the gas as a result of the reaction and vibrational exchanges. In some studies, the approximation of
level vibrational kinetics is used [8]. In the present paper, we employ simple versions of these models to analyze
the effect of presumed reaction mechanisms on nonequilibrium dissociation kinetics. In particular, for the stepwise
dissociation mechanism, it was concluded in [10, 11] that it is necessary to invoke level vibrational kinetics to
describe nonequilibrium dissociation in a nonisothermal boundary layer of a heated gas near a “cold” wall. We
examine the question of whether this conclusion remains valid for the indicated models.
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Interest in the present problem is motivated by the fact that according to modern dissociation models,
additional involvement of molecules at intermediate levels in the reaction can to be accompanied by collisions of
molecules with particles, which are assumed to be in equilibrium distribution in velocities and rotational sublevels.
In this case, the degree of nonequilibrium of the molecular vibrational distribution can decrease.

Models of Kinetic Processes. Below, we assume that dissociating molecules make up a small impurity
in the monatomic inert gas. Therefore, recombination can be ignored and, among vibrational transitions, only
VT exchanges are considered.

For the flows considered, the inequalities τ 6 τR � τd ∼ θ are valid. Here τ and τR are the characteristic
times of translational and rotational relaxation, τd is the dissociation time, and θ is the characteristic time of flow.
By virtue of this, we assume locally-equilibrium velocity distributions of the atoms and molecules and locally-
equilibrium distributions of the molecules in rotational levels.

Let α be the number of vibrational level of a molecule with energy EV
α (α 6 β and EV

α 6 EV
β ' Q)

whose dissociation occurs from level β. For this limiting version of the stepwise reaction mechanism (we call it the
V mechanism), the microscopic rate of reaction from the α level WV

α and the macroscopic rate of dissociation KV
d

are given by

WV
α = δαβZaP

V
α Yαn, α 6 β; (1)

KV
d =

Za
na

PV
β Yβ , Za = naσa

√
8kT
πµ

. (2)

Here Za is the gas-kinetic frequency of collision of the molecules with the inert atoms, σa is the gas-kinetic cross
section of these collisions, µ is the normalized mass of the molecules and the atoms of the diluent gas, Yα = nα/n

(nα is the number density of molecules with energy EV
α ), n and na are the number densities of the molecules and

atoms, respectively (under the assumption that na � n), PV
α is the ratio of the cross section of dissociation from

the α level to the collision cross section for an unexcited molecule, which can be both smaller and larger than unity
(PV
α > 1 when the actual frequency of collisions leading to disintegration of molecules at the α level exceeds the

value of Za because of change in particle interaction laws due to severe vibrational excitation of a particle [12]).
Values of Yα are determined by solving the system of equations of vibrational level kinetics (see, e.g., [3, 4, 13, 14]).

We assume that dissociation can occur from any vibrational levels (i.e., for all EV
α 6 Q) if the deficiency in

energy necessary for molecule dissociation is compensated for by the relative motion of colliding particles. A model
of the reaction (we call it the TV model) can be formulated using the corresponding cross section:

σTV
α (E) = 0, E = µg2/2 6 Q− EV

α = ET
α , σTV

α (E) = σaP
TV
α (1− ET

α /E), E > ET
α . (3)

Here g is the relative velocity of a molecule and atom. Considering (3), for the microscopic rate of dissociation from
the α level WTV

α and the macroscopic reaction rate constant KTV
d , we obtain the expressions

WTV
α = ZanP

TV
α exp

(EV
α −Q
kT

)
Yα, KTV

d =
Za
na

exp
(
− Q

kT

) β∑
α=0

PTV
α exp

(EV
α

kT

)
Yα.

Similarly, the contribution of rotations to the reaction mechanism is allowed for using the TRV model. In
particular, it is assumed that the molecules are stable if

EVR
αj ≡ EV

α + ER
j (α) < Q.

Here j is the rotational quantum number and ER
j (α) is the energy of rotations of a molecule in the state αj. In

addition, it is assumed that the deficiency in the energy Q−EVR
αj necessary for molecule dissociation is compensated

for by the energy of relative motion of colliding particles µg2/2, and the dissociation cross section corresponds to
model (3), in which the quantity ET

αj ≡ Q− EVR
αj is used instead of ET

α .
As a result, for the microscopic rate of dissociation from the state αj, we obtain the expression

WTRV
αj = ZanP

TRV
αj exp

(EVR
αj −Q
kT

)
Yαj , (4)

where Yαj ≡ nαj/n = (nα/n)(nαj/nα) ≡ YαYj(α) (nαj is the number density of molecules in the state αj).
Next, it is assumed that at specified energy EV

α < Q, molecules with rotational energy ER
j (α) < Q − EV

α

are stable. This means that in calculating WTRV
α , one should sum up WTRV

αj in (4) from j to j(α)max, and the
rotational quantum number j(α)max should correspond to the rotational energy Q− EV

α .
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For the high-temperature flows considered, summation over j can be replaced by integration. In addition,
one should take into account that in the case of homonuclear molecules, the quantum numbers j can be only even
or only odd. These features do not influence the calculation result WTRV

α by virtue of the high gas temperatures.
Thus, for WTRV

α , we obtain the formula

WTRV
α = ZanP

TRV
α

Q− EV
α

kT
exp

(EV
α −Q
kT

)
Yα,

which leads to the following expression for the macroscopic dissociation rate constant:

KTRV
d =

Za
na

exp
(
− Q

kT

) β∑
α=0

PTRV
α

Q− EV
α

kT
exp

(EV
α

kT

)
Yα.

The literature contains contradictory data on the probabilities of multiquantum exchanges. For example,
Gonzales and Varhese [15] showed that for various collision models for the same conditions, the ratio of the prob-
ability of double-quantum exchanges to the probability of one-quantum exchanges is in the range of 10−7 to 1.
Therefore, to determine the role of multiquantum exchanges in the nonequilibrium kinetics of thermal dissociation,
we assume that in the gaseous medium considered there are only single and double-quantum (V–T) transitions,
whose probabilities are related by the equality

P(α+2)→α = ηαP(α+1)→α.

Here ηα = η exp [A(εα − q)], where εα ≡ EV
α /(kT ), q ≡ Q/(kT ), and η 6 1 and A 6 1 are adjusting parameters.

The adopted model is quite realistic. In particular, according to this model, the (V–T) transitions for most of
the vibrational spectrum are adiabatic for gas temperatures typical of dissociation, and, hence, the probabilities of
multiquantum exchanges should be rather low in this case [2, 3].

In all cases, we describe the probabilities of one-quantum VT exchanges by the well-known relation [2]
P(α+1)→α ≡ Pαα+1 = (α+1)P 0

1 exp (δVTα). It is valid subject to the condition that the transition is adiabatic, which
is, strictly speaking, violated in the neighborhood of the upper vibrational level of the molecule. For example, for
impurity N2 in Ar, we have [3, 14]

δVT =
4
3
γ0

∆E
EV

1

≈ 6.28√
T
, γ0 =

πEV
1

~a∗

√
µ

2kT
≈ 628√

T
.

Here γ0 is the adiabaticity parameter of the 1→ 0 transition, ∆E is the anharmonicity of the vibrational spectrum,
a−1
∗ is the interaction radius of the colliding particles, T [K] is the gas temperature, and ~ is the Planck constant.

Equations of Vibrational Level Kinetics. By virtue of the above assumptions, the equations solved
below for Yα can be written as

∂nYα
∂t

+∇(nYαu+ nYαvα) = RVT
α −Wα, (5)

where

RVT
α = ZanP

0
1 (rαα+1 + rαα−1 + rαα+2 + rαα−2),

rαα+1 = (α+ 1) exp (δVTα)[Yα+1 − exp (−εα+1 + εα)Yα],

rαα−1 = α exp (δVT(α− 1))[exp (−εα + εα−1)Yα−1 − Yα],

rαα+2 = ηα(α+ 1) exp (δVTα)[Yα+2 − exp (−εα+2 + εα)Yα],

rαα−2 = ηα−2(α− 1) exp (δVT(α− 2))[exp (−εα + εα−2)Yα−2 − Yα]

(the expressions for Wα are given above). It should be noted that in Eq. (5), the terms r0
−2 and r0

−1 are absent for
α = 0, the terms r1

−1 are absent for α = 1, the terms rβ−1
β+1 are absent for α = β − 1, and the terms rββ+1 and rββ+2

are absent for α = β.
We assume that the vibrational relaxation time for molecules τVT, the characteristic time of flow θ, and the

reaction time τd satisfy the conditions

τVT � θ ≈ τd. (6)
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In the present paper, we calculate the normalized function of distribution of dissociating molecules in vi-
brational levels Fα = Yα/Y

0
α under the above assumptions of properties of the flow considered. Using conditions

leading to implementation of the approximation of local strongly nonequilibrium solutions for the high-energy tails
of the distributions Yα, we transform the left side of Eq. (5) as is done in [10, 11, 14]. In particular, we assume that
at the point of the flow considered, with satisfaction of conditions (6) and some restrictions from above on values
of the nondimensional vibration energy εα � 1, the solution of Eq. (5) has the same properties

|∇ ln Fα| � |∇ ln Y 0
α | ≈ εα|∇ ln T | (7)

as for εα ≈ 1 on the “dome” of distributions of molecules in their vibrational levels (Y 0
α is the locally-equilibrium

Boltzmann distribution in EV
α ).

An important property of the distribution function Fα is that with satisfaction of conditions (6) and for
εα � 1, it can differ qualitatively from the functions Yα and Y 0

α , which vary much faster in this case. If inequalities
(7) are satisfied, the function Fα can be calculated as a local function, i.e., a function that depends on local values
of the macroparameters and their spatial derivatives [10, 11, 14]. Indeed, in the main approximation taking into
account (7), in the kinetic equation, we can ignore terms with spatial derivatives of the unknown function Fα. This
allows us to obtain an approximate nonequilibrium local solution for this function. Results of solving the kinetic
equations for the tails of the molecular distributions show that with increase in the vibrational level number, the
nonequilibrium local solution can become invalid. This can be due to a change of the sign of the distribution
function calculated in the region of the tail or violation of conditions (6) or (7), for example, at the “cold” wall.

Using conditions (7) and neglecting obviously small terms as done in [10, 14], we bring the left side of Eq. (5)
for the case of nonisothermal boundary-layer flow to the form

∂nYα
∂t

+∇(nYαu+ nYαvα) = −DαY
0
αFαε

2
α(∇y ln T )2 (εα � 1), (8)

where Dα the diffusion constant for molecular diffusion in the diluent gas, which depends on EV
α [12]. The y axis

is directed along the normal to the streamlined surface. Thus, Eq. (5) reduces to a system of local linear algebraic
equations for calculating the above distribution.

The solution obtained for Fα, which is asymptotic by virtue of (8) and conditions (7), must be joined to the
solution obtained for εα ∼ 1, where Fα ≈ 1 because of fast VT relaxation. The joining is achieved by replacing, the

equation with α = 0 in (5) by the normalization condition
β∑
α=0

Y 0
αFα = 1.

Numerical Results and Discussion. Numerical values of the rate constant for dissociation of nitrogen
in argon were determined in the case of no motion in the gas (∇ ln T = 0), for various reaction models and
VT-exchanges and for various values of the quantities included in these model. In particular, in the calculations,
we assumed that over a wide range, the maximum and minimum values of the coefficients PV

α , PTV
α , and PTRV

α

are identical for all models considered and independent of the vibrational level number. Some calculations of the
reaction rate constant were performed for conditions where values of PV

α for all versions of the reaction mechanism
were determined from the cross-sectional dimensions of the vibrationally excited molecules (Morse oscillators) that
collided with atoms [12]. Let us consider these assumptions in greater detail.

From the physical viewpoint, Pα is the ratio of the cross section of atom–molecule collisions involving
dissociation of the molecules from the α level to the gas-kinetic cross section of collisions of unexcited molecules and
atoms. When the vibrational energy of a molecule becomes higher, the molecule cross section increases (first slightly
and near the dissociation threshold, by an order of magnitude [12]). Therefore, for the chosen reaction models, the
basic contribution to the reaction rate is made by molecules at the upper (uppermost in the case of the V model)
vibrational levels. According to the estimates given in [12], for molecules simulated by Morse oscillators, the cross
section of their collisions with atoms can be almost an order of magnitude higher than the gas-kinetic cross section if
the vibration energy accumulated by the molecules is close to the dissociation energy. Therefore, for the coefficient
Pα, the value of Pα ≈ 10, which does not depend on the vibrational level number, has the meaning of the upper
bound of possible values for this quantity and the calculated macroscopic reaction rate. The value Pα ≈ 1 has the
meaning of the lower bound for the same quantity. Thus, we can assume approximately that for the coefficients Pα,
the admissible values that do not depend on the vibrational level number are in the range 1 6 Pα = P 6 10.
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Fig. 1 Fig. 2

TABLE 1

Kd/Kd,exp

T , K log Kd,exp P = 10 Morse oscillator P = 1(
Kd is in cm3

mole · sec

)
V, TV, TRV, V, TV, TRV, V, TV, TRV,

10−4 10−2 10−1 10−4 10−2 10−1 10−4 10−2 10−1

4000 3.50 6.75 5.85 7.68 7.34 1.31 1.290 2.80 0.762 0.854
5000 5.89 7.59 5.73 6.15 8.27 1.29 1.060 3.11 0.788 0.724
6000 7.47 8.34 5.48 4.86 9.10 1.25 0.874 3.38 0.800 0.621
7000 8.40 13.80 7.87 5.77 15.10 1.85 1.110 5.58 1.230 0.819
8000 9.07 21.40 10.40 6.41 23.40 2.55 1.330 8.60 1.760 1.020

Figure 1 shows the temperature dependence of the dissociation rate constant for Pα = P = 1 and ηα = 0.
Curve 1 corresponds to the experimental values of Kd recommended in [16], and curves 2–4 correspond to calculated
values of KV

d , KTV
d , and KTRV

d . Obviously, for Pα = P = 1 and ηα = 0, the values of Kd obtained using the V and
TV models are considerably underestimated (by two or three orders of magnitude) compared to the experimental
data. The temperature dependence of Kd is described more accurately (for given values of Pα and ηα) by the TRV
reaction model, but in this case, too, the compared quantities differ by an order of magnitude.

Since the actual values of the adjusting parameters Pα and ηα are not known reliably, it is of interest to
study the effect of these parameters on the quantity Kd.

Figure 2 gives calculated Kd for the models considered for various values of P and ηα in the gas at rest at
the fixed temperature T = 8000 K (∇ ln T = 0). Solid curves correspond to the case ηα = 0, and dashed curves
correspond to ηα = 1. The numbering of the curves in Fig. 2 corresponds to that adopted in Fig. 1.

Calculated dissociation rate constants for all above-mentioned models compared to experimental recom-
mended values presented in Table 1 show that the choice of a realistic reaction model is important.
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Fig. 3 Fig. 4

The data presented in Figs. 1 and 2 and Table 1 show that among the thermal dissociation models used
in the present paper, only the TV and TRV models (for large values of the parameter P ) can give a fit to the
experimental dissociation rate constant Kd. This is also true for calculations that take into account multiquantum
vibrational transitions in the neighborhood of the upper β level.

Makashev and Provotorov [10] examined the effect of gas flow in a nonisothermal boundary layer on the
dissociation rate of diatomic molecules — reduced harmonic oscillators. The reaction was described within the
framework of the stagewise mechanism (V model). In this case, as in [14], it was not required to obtain a calculated
value of Kd for the fixed gas that agreed with the experimental value. With allowance for properties of local
nonequilibrium solutions for the vibrational distribution of molecules, it was assumed that the nonequilibrium rate
constant for dissociation in a moving gas can be determined as the product of the exactly calculated nonequilibrium
correction for motion and the experimentally determined constant Kd for the gas without motion. As is shown
in [10, 14], this assumption results from the fact that for the V reaction model, the magnitude of the correction
for motion is determined by solving the equations of level kinetics for vibration energies EV

α < Q − O(kT ), and
the quantity Kd in a fixed or weakly nonhomogeneous gas is determined by solution in a much narrower range of
energies near the dissociation threshold Q− O(kT ) < EV

α < Q. We note that in the first case, the nonequilibrium
distribution of molecules in levels is due to molecule transfer in a nonuniform temperature field, whereas in the
second case, it is due mainly to “removal” of molecules from the upper levels as a result of to dissociation. In a
nonisothermal boundary layer there is diffusion of excited particles toward lower gas temperatures. As a result, in
this case, the nonequilibrium distribution is accompanied by a considerable overpopulation of the upper vibrational
levels compared to their locally-equilibrium population.

Figure 3 gives corrections for motion Fd ≡ Kd(∆2q2)/Kd(0) calculated using various reaction models (solid
and dashed curves correspond to P = 1 and 10, respectively). In the flow considered, the nonequilibrium distribution
of molecules in vibrational levels is characterized, by virtue of (8), by the quantity ∆2q2 [10, 14], where ∆2 ≡
D(∇y ln T )2(ZaP 0

1 ε1)−1 ∼ τVT/θ � 1 (D is the diffusion constant of unexcited molecules); the numbering of the
curves corresponds to Fig. 1. In the calculations, multiquantum vibrational transitions were ignored, and the gas
temperature T = 8000 K.

From the data presented in Fig. 3 it follows that in calculations using the TV and TRV models, the magnitude
of the correction for motion to the reaction rate constant is less significant than that for the V model. In addition,
this correction decreases with increase in the parameter P . For example, for the TRV model at P = 10, the gas
flow has little effect on the dissociation rate, unlike in calculations using the V model. These facts are explained as
follows. Under the assumptions made above, the expression on the left side of the equations of level kinetics that
defines the effect of diffusive transfer of excited molecules in a nonisothermal boundary layer on the population
of vibrational levels Yα is in inverse proportion to Pα [because of the diffusion constant of excited molecules Dα
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[12], which decreases considerably (by an order of magnitude) with increase in the level number] and is directly
proportional to the square of the product of ∇T and EV

α . Nevertheless, for the upper vibrational levels, the value
of this expression is maximal. However, for the TV and TRV models, the contribution to the reaction is made
by molecules at lower vibrational levels. For such molecules, the relative contribution of diffusion processes to the
balance of vibrational populations is smaller. Accordingly, for the TV model and especially for the TRV models,
the total effect of the gas flow on the reaction rate is diminished.

The aforesaid is illustrated by the results of calculation of the given distributions F = Y/Y0 presented in
Fig. 4 at T = 8000 K and above ∆2 = 0 (solid curves) or ∆2q2 = 4 (dashed curves). The dissociation kinetics
was described within the framework of the V reaction model (curves 1), the TV model (curves 2), and the TRV
model (curves 3). In the calculations, we considered only single-quantum transitions, except for the V model, for
which single- and double-quantum transitions (curves 1a) were also simultaneously taken into account for η = 1
and A = 1. The parameter P was set equal to 10. The curves obtained for the TV and TRV models with allowance
for double-quantum transitions are not given in Fig. 4 because they practically coincide with the curves obtained
for these models taking into account only single-quantum transitions.

For the three indicated models of dissociation, the decrease in the magnitude of the correction for motion
to the reaction rate constant with increase in the parameter P (see Fig. 3) is due to the diminution of the effect
of diffusion processes on the vibrational distribution function as a whole. For example, for the TRV model of
dissociation, the intermediate and upper levels are considerably depleted compared to the populations of these
levels for the V model (see Fig. 4), and, as a result, the effect of motion on the dissociation kinetics practically
disappears.

Calculations taking into account double-level (V–T) transitions showed that for η ≈ 1 and A ≈ 1, the results
change insignificantly: double-quantum transitions have an effect only on the populations of several upper levels
and practically do not influence the dissociation rate constant calculated within the framework of the TV and TRV
models. In the case of the V model, allowance for double-quantum transitions leads to a small increase in values of
Kd.

For η ≈ 1 and A � 1, the calculation results change significantly. In this case, the assumption that the
(V–T) transitions are adiabatic breaks down. As a result, Pαα+2 � Pαα+1 [2], and, hence, for A� 1, the quantity η
can only be small.

Conclusions. The analysis of several models for thermal dissociation of diatomic molecules in a nonisother-
mal boundary layer allows the following conclusions to be drawn.

A calculated value for the dissociation rate constant close to the value measured experimentally and rec-
ommended for use can be obtained using the TV and TRV reaction models if the chosen values of the adjusting
parameter P are sufficiently large.

Use of the model of double-quantum vibrational–translational transitions, which takes into account the
adiabaticity of single-quantum transitions for most of the vibrational spectrum of molecules, does not lead to
significant changes in calculated values of the dissociation rate constant and the correction for motion to it.

In calculations of the dissociation rate constant for a fixed or weakly nonhomogeneous gas, the effect of the
gas flow is far less significant for the most realistic model than for the previously considered stagewise dissociation
mechanism, which presumes only dissociation from the upper vibrational level.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 95-01-00236a,
96-15-96063).
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(1987), pp. 3–31.

588


